DevOps

MANAGE WHAT MATTERS ‘ GLOBALPARK

from pain delivery to continuous delivery

Jackson Santos

Status: Entwurf

Revision 2.0

Datum Verantwortlicher

11.08.2011

NN

© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hurth

MANAGE WHA MATTERS ‘ GLOBALPARK

Nnhaltsverzeicnnis

Einleitung Continuous Delivery 1
Zielsetzung 1
Ziele 1
Problematik 1
Losung: Ofters releasen 1
Wesentliche Vorteile von Continuous Delivery 1

Software vom FlieBband 2
Das Continuous Testing Model 3

Kurze Erlduterung der Phasen des CT-Modells 3
Wesentliche Vorteile von Continuous Testing 4
Was steht Continuous Testing im Weg? (Subjektive Betrachtung fiir den Fall Globalpark) 5
Risiken bei der Einfihrung von Continuous Testing 6
Fazit zu Continuous Testing 6

Jenseits von Continuous Testing 7

Deployment Pipeline 8
Management von Artefakten 9
Die Phasen der Deployment Pipeline 9
Self-Service Deployment 11

Was kann im Auslieferungsprozess noch optimiert werden? 14

DevOps
from pain delivery to continuous delivery

‘ GLOBALPARK

—inleitung Continuous Delivery

Zielsetzung

Continuous Delivery geht vom einfachen Prinzip aus, dass die Software jeder Zeit einsatzbereit ist. Mit Hilfe von agilen
Ansatzen wie Continuous Testing und Continuous Deployment wird versucht, den Releaseprozess so zu gestalten, dass die
Software per Knopfdruck ausgeliefert wird. Hierdurch soll nicht nur sichergestellt werden, dass das mit dem Release
verbundene Risiko minimiert wird, sondern auch, dass das Endprodukt inkrementell an die BedUrfnisse des Kunden oder
Stakeholder angepasst werden kann.

In diesem White Paper geht es grundsatzlich darum, zu zeigen, wie die Automatisierung des Build-, Deploy-, Test- und
Releaseprozesses mit Hilfe einer Deployment Pipeline erfolgen kann und welche Vorteile bzw. Herausforderungen damit
verbunden sind.

Ziele

1. Kontinuierliche Verbesserung der Softwarequalitét

2. Optimierung des Build-, Deployment-, Test- und Releaseprozesses
3. Aufbau einer ,production-ready software* Mentalitat

Problematik

Da die Releasephase fast immer als ,schmerzhaft” empfunden wird, tendieren wir dann, die Software so selten wie mdglich
oder ganz am Ende einer aufwandigen Entwicklungsphase zu releasen. Das Problem bei diesem Ansatz ist, dass, je seltener
die Software released wird, desto gréBer ist die Wahrscheinlichkeit, dass ,Uberraschungen® in der Testphase bzw.
Produktivphase auftreten werden. Im schlimmsten Fall kann es beim Auftreten unbekannter Probleme bereits zu spat sein,
sodass wertvolle Features fehlerhaft oder nicht in vollem Umfang ausgeliefert werden.

Losung: Ofters releasen

Um diese ,Uberraschungen® zu vermeiden und Risiken zu minimieren, soll die Software 6fters released werden. Mit
Jreleasen” ist nicht unbedingt die tatséchliche Auslieferung an den Kunden gemeint, sondern auch die Auslieferung eines
fertigen Produkts an die QA oder an beteiligte Stakeholders.

Hierbei soll das Testen keine Phase sein, sondern vielmehr ein Teil des Entwicklungsprozesses. Nur wenn wir auftretende
Probleme kontinuierlich beseitigen, und zwar vom Anfang an, wird unser Produkt am Ende der Entwicklungsphase robust
genug sein, so dass es frihstmdglich an den Kunden gebracht werden kann.

Wesentliche Vorteile von Continuous Delivery

Robustheit: Die Software ist immer releasebar (dies ist zugleich die groRe Herausforderung von Continuous Delivery).
Strategischer Vorteil: Die Entscheidung ,wann releasen” ist nicht (immer) von Test- oder Releasephase abhangig.
Erfolgsmessung: Der reale Projekterfolg kann nur gemessen werden, wenn die Software released und echtes Feedback
eingeholt wurde.

© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hrth

‘ GLOBALPARK

Software vom FlielBband

Die EinfUhrung von Continuous Integration ist sicherlich fir die Steigerung der Qualitat und der Produktivitat bei vielen
Softwareprojekten verantwortlich. Cl gibt uns die Sicherheit, dass sich der neue Code, den wir geschrieben haben, mit
anderen Modulen und Klassen einwandfrei integrieren lasst. Sollte unsere letzte Code-Anderung einen gravierenden Fehler
verursacht haben, werden wir sofort informiert und kénnen somit den Fehler schnellstmoglich beheben.

Obwohl die Einfihrung von ClI durch Systeme wie Jenkins oder CruiseControl sehr leicht gemacht wird, ist bei vielen
Unternehmen jedoch keine Umgebung vorhanden, die eine kontinuierliche aber auch konsequente Softwareintegration
unterstUtzt. CI-Systeme werden in der Praxis haufig als Buildmanagementsysteme eingesetzt. Wobei hiermit nur die Code-
Kompilierung und das Linken des kompilierten Codes an Bibliotheken gemeint ist. Wichtige Aspekte wie der Einsatz von
dedizierten Testrechnern sowie eine kontinuierliche Testentwicklung werden haufig vernachlassigt.

Die fehlende Planung einer Teststrategie kann beim Einsatz von Cl in der Praxis folgende Probleme mit sich bringen:
e Tester und Support warten zu lange auf ,green builds®, da die Ausflhrung vorhandener Tests zu lange dauert.
e Dem Development-Team werden weiterhin Bugs gemeldet, obwohl das Projekt seit Monaten abgeschlossen wurde.

e Erst am Ende der Entwicklungsphase wird erkannt, dass die System-Architektur die nicht-funktionalen Anforderungen
(Stichwort: Performanz) nicht erflllen kann, da eine kontinuierliche Entwicklung der Tests nicht stattfindet.

All das kann zu einer Software fUhren, die trotz kontinuierliche Integration nicht robuster bzw. nicht performanter wird. Nicht
vorhandene Zusicherungen im Laufe der Entwicklungszyklen missen am Ende der Entwicklungsphase durch aufwandige
und kostenintensive manuelle Tests kompensiert werden (zum Teil auch durch manuelle Regressionstests).

Ein moglicher Ansatz fir die Optimierung des Integrationsprozesses ist die (fast) vollstandige Automatisierung des
Testprozesses. Dieser Ansatz wird mit dem Begriff ,Continuous Testing” beschrieben (vgl. Abbildung 1). Es handelt sich um
einen ganzheitlichen Testmanagement-Ansatz, wobei der Fokus bei der Feedback-Generierung liegt.

© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hrth

‘ GLOBALPARK

Das Continuous Testing Model

Generate
.- Feedback -

Jenkins

Commit, pull
and run unit tests

Developer A push changes poll Codecheck @
@ * depends on
4—1 Unittests @ go parallel

poll on every
change!

Developer B * depends on

Integrationtests @ :
Mercurial :
¢ depends on

@ Build (7)

push changes

Commit, pull 0

and run unit tests -_>
optional: daily deploy eplo deoends on S€ @
. ; . to test enviroments ! i
Abbildung 1: Continuous Testing . Run Acceptance Tests

Kurze Erlduterung der Phasen des CT-Modells

1 - Anderungen im lokalen Repository werden committed und die letzte Anderungen vom Remote-Repository gepullt - und
damit auch die letzten Unittests -. Die Unittests sollen erst lokal ausgefiihrt werden. Durch Parallelisierung bei der
Testausfiihrung und Einsatz von dedizierten Testrechnern, soll dieser Vorgang nur wenige Sekunde dauern.

2 - Nach erfolgreicher Testausfiihrung werden die Anderungen zum Remote-Repository gepusht.

3 - Der Cl-Server Uberprtft alle x Sekunden, ob neue Revisionen eingecheckt wurden. Wenn das der Fall ist, wird das
System ,neu gebaut“. Daflr werden die Schritte 4 und 5 auf einem dedizierten Testrechner parallel ausgefiihrt. Diese zwei
Schritte bilden die sog. ,Commit Stage” des Build-Prozesses und sollen als erstes ausgeflhrt werden. Durch Parallelisierung
soll dieser Vorgang nur wenige Minuten dauern (in der Praxis liegt die maximale Grenze bei etwa 5 bis 10 Minute).

4 - Der statische Codecheck wird ausgeflhrt (Commit Stage).
5 - Unitests werden ausgeftihrt (Commit Stage).
6 - Integrationtests werden ausgefihrt (optional in Commit Stage).

7 - Ein ,,grUner Build“ wird erstellt und somit auch ein potentielles Release. Ab diesem Moment, missen QA und Support in
der Lage sein, den Build in die gewlnschte Zielumgebung zu deployen und zwar unabhangig davon wie die Ergebnisse der
automatisierten und manuellen Akzeptanz-Tests aussehen werden (warum? siehe in diesem Abschnitt).

8 - Der erzeugte Build wird automatisch (!) in die Akzeptanz-Zielumgebung deployed.

9 - Akzeptanz-Tests (automatisierte GUI-, Performance(!)- und Smoketests) werden ausgefihrt. Diese Phase wird
JAcceptance Stage” genannt und dauert in der Regel langer als die ,Commit Stage*.

10 - Ein Bericht mit den Ergebnissen des Build- und Testprozesses wird erstellt und kann vom Entwickler oder
Projektverantwortlichen als wichtiger Feedback-Mechanismus verwendet werden.

© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hrth

Abbildung 2: Extreme Feedback Device

Sobald der Buildprozess wegen eines schwerwiegenden Fehlers
unterbrochen wird, bekommen die Entwickler, die fur die letzte
Revision zusténdig sind, eine entsprechende Warnmail. Im Idealfall
begleitet der Qualitatsverantwortlicher den gesamten Prozess und
verschickt personliche Erinnerungsemails, da diese meistens
schwer zu ignorieren sind. Zuséatzlich dazu, kénnen sog. Extreme
Feedback Devices in Form von physischen Objekten eingesetzt
werden. Diese leuchten, blinken oder geben verschiedene
Geréusche aus je nachdem wie der Build-Status geworden ist (vgl.
Abbildung 2).

Wichtig bei diesem Ansatz ist, dass der Build-Prozess vollkommen
transparent gemacht wird. Jeder, der im Prozess beteiligt ist - im
normalen Fall das ganze Development-Team -, soll in der Lage sein,

Fehler zu beheben und zwar unabhéngig davon, ob der Fehler mit

dem Build-Skript zusammenhangt oder von der letzen Code-Anderung verursacht wurde. ,Keep builds in the green® soll in

diesem Zusammenhang das oberste Gebot sein.

Die technische Umsetzung des Continuous-Testing-Models, sowie die Begriffe ,Commit Stage” und ,,Acceptance Stage”

werden im Unterkapitel ,,Deployment Pipeline” naher erlautert.

Wesentliche Vorteile von Continuous Testing

¢ Risikominimierung

i Fehler kdnnen friher erkannt und behoben werden.

ii. Der ,Gesundheitszustand“ der Software ist messbar und flr alle sichtbar.

. Risiken bei getroffenen Annahmen (,ich denke, dass es jetzt gefixt ist") werden minimiert.

¢ Minimierung repetitiver Prozesse durch Prozessautomatisierung

i. Durch die Minimierung wiederholender Prozesse werden Zeit, Kosten und Arbeitsaufwand gespart.

ii. Entwickler haben mehr Freiheit flr kreative Aufgaben, da wenig manuell gemacht werden muss.

ii. Der Prozess ist stark standardisiert und dadurch weniger fehleranféllig.

Production-ready Software

i. Hat die Software alle Phasen des Build- und Testprozesses Uberstanden, so ist die Wahrscheinlichkeit, dass
Fehler in der Produktivumgebung auftreten, sehr gering. Hierdurch wird gewahrleistet, dass die Software friher

an den Kunden gebracht und echtes Feedback eingeholt werden kann.

¢ Prozesstransparenz

i. Vielen Projektverantwortlichen stehen keine Informationen Uber den aktuellen Stand der Software zur
Verflgung. Das kann dazu fUhren, dass die Entscheidungsfindung, um z.B. eine Optimierungsaufgabe

durchzufUhren, extrem erschwert wird. Continuous Testing kann Informationen Uber Build-Status und

Qualitatsmetriken ,just-in-time“ bereitstellen, sodass jeder den aktuellen ,Gesundheitszustands” der Software

kennt und bei der Entscheidungsfindung unterstitzen kann.

© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hrth

——

GLOBALPARK
e

Was steht Continuous Testing im Weg? (Subjektive Betrachtung fiir den Fall Globalpark)

¢ Geringe Testabdeckung: Das Thema ist im Fall von Globalpark ein generelles Problem. Fehler kdnnen nur gefunden
werden, wenn auch Tests daflr existieren. Die Folge einer geringen Testabdeckung ist, wie im vorigen Absatz erwahnt,
dass gleiche Tests mehrmals wiederholt werden missen. Nebeneffekte wie z.B. Folgefehler werden dadurch nicht (immer)
ausgeschlossen. Mégliche MaBnahmen fiir die Optimierung der Testabdeckung werden im Folgenden aufgelistet:

i. Wichtige Codebereiche identifizieren und Integrationstests nachziehen.

ii. Testaufgaben kdénnen Uber Kanban umgesetzt werden.

. Obligatorische Unit- und Performancetests flir neue Features (Definition of Done).

iv. Durchdachte Branching-Strategie (TOFU Skala - siehe Vortrag ,Branching Concepts” von Jackson).

¢ Kulturelles Problem: Es existiert noch keine besténdige Kultur. Committen bedeutet langst nicht fertig sein. Erst wenn
eine robuste Software in die Produktivumgebung gebracht wurde, ist das Development-Team endlich fertig. Solange die
Software nicht ausgeliefert wurde, ist die reale Leistung des Entwicklers nicht erbracht worden. Mdgliche MaBnahmen fir
dieses Problem werden im folgenden aufgelistet:

i. Aufbau einer ,production-ready software” Mentalitat. Jedes Check-In kann ein potentielles Release werden.
ii. Kein Commit von fehlerhaften Features (Unittests erst lokal ausflhren)
ii. Fehlerhafter Build soll schnellstmdglich behoben werden (jeder ist hierbei Owner des Buildprozesses)

e Wartung des Cl-Systems: Die aufwandige Wartung eines ClI-Systems kann einer der Hauptgrinde sein, warum
Continuous Testing nicht vollstandig eingeflhrt wird. Allerdings wird in der Praxis schnell erkannt, dass die Wartung und
Kontrolle eines robusten CI-Systems bequemer und kostenglinstiger ist als die Uberwachung manueller Prozesse. Je
komplexer eine Software wird, desto sinnvoller sollte der Einsatz von Continuous Testing sein. Bei komplexen
Softwareprojekten wird jedoch haufig auf Continuous Testing verzichtet und zwar mit der Begrtindung ,Die Wartung des
Cl-Systems sei zu Aufwandig*“.

e Zu viele Anderungen im Entwicklungsprozess: Ein weiterer Grund, warum auf Continuous Testing immer wieder
verzichtet wird, sind die Prozessénderungen an sich. Es wird meistens argumentiert, dass die Einflhrung eines solchen
Models zu viele Anderungen mit sich bringt und aufgrund des hohen Aufwands nicht gewahrleistet werden kann.

Allerdings kann die Einfihrung von Continuous Testing nur erfolgreich ablaufen, wenn sie in kleinen Schritten stattfindet.
Die Optimierung der Form, in der wir Software fUr die Produktivumgebung bereitstellen, sollte daher nicht als ,Big-Bang-
Ansatz“! durchgefiihrt werden. Identifizierung und Realisierung anhand von Quickwins sind hier der Weg zum Erfolg.

* Einchecken von instabilen Anderungen: Eine der gréBten Schwierigkeit bei der Einfiihrung von Continuous Testing
sind die standige ,rote Builds". Der Grund daflr sind haufig die nicht stattfindende lokale TestausfUhrung sowie die nicht
stattfindende Trennung von Stable- und Integration-Lines. Mégliche MaBnahmen fur diese Problematik werden im
folgenden aufgelistet:

i. Unittests nachziehen und erst lokal ausfuhren (gréBte Herausforderung von Continuous Testing)

i. Transparenz schaffen (welche und wie viele Unittests haben wir, wo kann ich sie finden?)

. Kosten eines in der Produktivumgebung auftretenden Fehlers sichtbar machen (was kostet Globalpark ein
fehlender Unittest nachdem die Software bereits ausgeliefert wurde?)

' Stichtag: bzgl. Software- oder Prozesseinfihrung
© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hrth

MANAGE HAT MATTERS ‘ GLOBALPARK

¢ Anschaffungskosten (Hardware, Software) und Einarbeitung: Selbst wenn bei vielen Unternehmen behauptet wird,
dass Continuous Testing stattfindet, ist dies in der Regel nicht der Fall. Die mit der EinfUhrung eines CI-Systems
verbundene Anschaffungskosten werden von Qualitatsverantwortlichen als zu hoch eingeschatzt, sodass Continuous
Testing nur zum Teil vorhanden ist. Die Anschaffungskosten fir neue Cl- und dedizierte Testrechner sowie die flr die
Einarbeitung in das Thema Continuous Testing sollen in der Tat nicht unterschatzt werden. Mittelfristig allerdings, kann
diese Investition durch einen positiven ,return on investment“ begriindet werden.

Risiken bei der Einfithrung von Continuous Testing

i. Unvertretbarer Aufwand fur die Wartung vorhandener Tests.
ii. Versehentlicher Aufbau einer ,passiven Mentalitat* was Qualitat angeht (,es wird eher getestet").
iii. Zu starker Fokus auf Automatisierung und Vernachlassigung der Akzeptanzkriterien.

Fazit zu Continuous Testing
Die Einfihrung von Continuous Testing und den damit verbundene Aufwand dUrfen wir sicherlich nicht unterschatzen. Die
Wirtschaftlichkeit jedoch, die durch den Einsatz eines solchen Models erzielt wird, darf nicht vernachlassig werden. Mit Hilfe

einer durchdachten Einfuhrungsstrategie soll jedes Development-Team in der Lage sein, den Einflihrungsprozess in kleinen
Schritten zu verwirklichen.

© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hrth

‘ GLOBALPARK

Jenseits von Continuous lesting

Das Ziel von Continuous Delivery ist, die Moglichkeit zu schaffen,
A Software per Knopfdruck bereitzustellen. Aber wie kénnen wir

, unseren Releaseprozess so anpassen, dass die Software jederzeit
4

4 einsatzbereit ist? Welche sind die technische Anforderungen, die bei

d
/ delta risk

, der EinfUhrung von Continuous Delivery zu beachten sind?

, Durch den Einsatz von Continuous Testing wird die Basis fUr das
’ geschaffen, was in der Praxis ,,Continuous Deployment” genannt wird.

Change
\

z Continuous Deployment beschreibt die kontinuierliche Auslieferung
e von Software an die QA, an Kunden oder an Stakeholder. Der
z > wesentliche Vorteil von Continuous Deployment ist die
Risikominimierung, die durch regelméBiges Releasen erzielt wird (vgl.
Abbildung 3).

Time

Durch regelmaBiges Releasen kann das Development-Team
auftretende Probleme besser nachvollziehen (die Themen sind ja
aktuell) und Fehler schneller beheben.

Aber nicht nur das Risiko wird durch haufiges Releasen minimiert,
sondern auch der Feedback-Zyklus zwischen Development, QA und
Stakeholder wird dadurch beschleunigt. Mit Hilfe von Ansétzen aus
der Lean-Startup-Bewegung wie z.B. ,Minimum Viable Product” wird
das Endprodukt nicht mit allen méglichen Features (Business Value)
an den Kunden (bzw. QA oder Stakeholder) ausgeliefert, sondern nur

Change

mit den Features, die im letzten Entwicklungszyklus vollstiandig?

»
Time umgesetzt wurden. Durch das Einholen von echtem Feedback wird

Abbildung 3: Risikominimierung nun sichergestellt, ob die umgesetzten Features den Anforderungen

entsprechen.

Damit wir regelmaBig releasen kénnen, missen wir zundchst sicherstellen, dass die Software deployable und somit jeder
Zeit releasebar ist. Um dies zu erreichen, soll jeder einzelne Build als ein potentieller Release-Kandidat behandelt werden.
Dadurch, dass der Build und somit ein neuer Release-Kandidat bei jedem neuen Commit ,entsteht®, muss jede Anderung in
der Software erst durch einen komplexen Delivery-Prozess validiert und freigegeben, werden bevor der Commit in die
Zielumgebung ausgerollt wird.

Der groBter Unterschied zwischen dem Delivery- und unserem herkdmmlichen Entwicklungsprozess besteht darin, dass die
Freigabe zwischen den einzelnen Phasen des Prozesses (Commit, Build, Deploy, Test und sogar Release) zum groBen Teil
automatisiert erfolgt.

Die technische Umsetzung von Continuous Testing® und somit auch von Continuous Deployment® wird anhand einer
Deployment Pipeline beschrieben (vgl. nachstes Kapitel).

2 Unter vollstéandig versteht sich: Getestet und fehlerfrei. Performance- und Loadtests gehdren ebenfalls dazu und sollten
nicht erst am Ende des Projektes ausgefiihrt werden.

3 Continuous Testing + Continuous Deployment = Continuous Delivery => Delivery Process
© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hurth

Deployment Pipeline

‘ GLOBALPARK

Die Deployment Pipeline* beschreibt (auf einem hohen Abstraktionsniveau) die Automatisierung des Build-, Deployment-,

Test- und Releaseprozesses. D.h. die Automatisierung (fast) aller Prozesse, die notwendig sind, um die Software vom
Repository bis zum Kunden, Stakeholder oder QA zu bringen.

Der Input einer Deployment Pipeline ist eine bestimmte Revision im Versionsverwaltungs-

system. Fir jede Anderung in der Software wird ein neuer Build erstellt, der mehr oder weniger

wie eine Heldenfigur alle Testphasen und Herausforderungen des Prozesses Uberstehen muss,

um seine Robustheit zu beweisen. Am Ende des Prozesses wartet eine Prinzessin namens

~Releasefahigkeit*.

Jeder Build, der den Prozess durchlauft, wird aus unterschiedlichen Perspektiven (Code, GUI,

Performance, usw.) evaluiert, wobei die Initialisierung des Prozesses anhand unseres Cl-

Systems angestoBen wird (und zwar bei jedem Commit (1)).

Folgende Abbildung verschafft einen Uberblick, wie eine neue Revision aus unterschiedlichen Perspektiven evaluiert wird.

. Build und
Development Mercurial Unittests Akzeptanz-Tests Abnhametests Release
))))))
Check in | . : : : :
Trigger 1 ! , |
; . F F = Failed ! ! !
: Rickmeldung ! P = Passed : : :
]] -]]]
]] 1]]]
]]]]]
Check in ! ! ! ! !
Trigger 1 1 1 1
i i _ i i i
! Rickmeldung ! P Trigger 1 1 1
i i L i i
]])]]
1 1 1 1 1
i i i F i i
1 1 1 1 1
| Rickmeldung | | | |
1 1 1 : :
1 1 1 1 1
Check in i i i i i
Trigger ! i | |
1 1 1
i Riickmeldung | P Trigger ! i |
i i L i i
1 1 I 1 1
]]]]]
| | | P | |
]]]]]
' Rickmeldung | ' Freigabe ! '
]]] :
| | |
] | |
] T T
]]]
]]]
1 1 1

Riickmeldung

L

Freigabe
ﬂ

4=}

Abbildung 4: Anderung wird aus unterschiedlichen Perspektiven validiert

Das Ziel der Deployment Pipeline ist unfahige Release-Kandidaten bereits in frihen Stadien des Entwicklungsprozesses zu
identifizieren und Feedback Uber die Ursachen schnellstmdglich zu liefern. Daflir wird jeder Build, der eine Phase nicht
Ubersteht, automatisch als ,unfahiger Release-Kandidat“ gekennzeichnet und nicht an die nachste Phase weitergeleitet.

Ausnahmen bilden die Ubergange von Akzeptanz-Tests zu Abnahmetests sowie von Abnahmetests zum Release, da
auftretende Fehler subjektiv zu bewerten sind und ggfls. toleriert werden kénnen.

4 Der Begriff Pipeline kommt vom englischen Wort ,Pipe“ und bezeichnet den Datenstrom zwischen zwei Prozessoren nach
dem FIFO-Prinzip, wobei der Fokus bei der Parallelisierung der Ausfuhrung liegt.

© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hurth

——

GLOBALPARK
e

Management von Artefakten

Jedes Mal wenn das System neu gebaut wird, wird der erstellte Build in Form eines Artefakts im Cl-System abgelegt. Ein
fundamentales Prinzip bei der Umsetzung der Deployment Pipeline ist, dass das Artefakt bei der Initialisierung des Prozesses
ein einziges Mal erstellt wird. Das verhindert, dass der Code wahrend des Prozesses neu kompiliert wird und
seingeschlichene” Fehler in spateren Phasen nicht abgefangen werden.

Das Problem bei diesem Ansatz ist, dass jedes Artefakt aufbewahrt wird und zwar unabhangig davon, ob es jemals released
oder verwendet wird. Hierflr muss ein Kompromiss gefunden werden, sodass altere Artefakten des Systems ab einer
bestimmten Zeit endgultig geldscht werden durfen. Wo die Artefakten letztendlich gespeichert werden, nachdem sie den
Delivery-Prozess erfolgreich durchlaufen haben, ist abhangig davon, wie lange sie aufbewahrt werden. Wichtig ist nur, dass
es sich hierbei um ein File-System mit regelmaBigen Backups handelt. Dieses wird in der Praxis auch ,Artifact Repository*
genannt. Siehe bitte Abschnitt ,Commit Stage” fir mehr Information Uber das ,Artifact Repository®.

Eine weitere Technik, die sich in der Praxis bewahrt hat, ist das Taggen der Artefakten mit Informationen Uber die Revision,
aus der das Artefakt entstanden ist. Hiermit kann der Zusammenhang zwischen Source-Code, Artefakten und
Systemkonfiguration in allen Phasen des Delivery-Prozesses hergestellt und sichtbar gemacht werden.

Die Phasen der Deployment Pipeline

Um die Essenz einer Deployment Pipeline besser darzustellen, werden die einzelnen Phasen der Pipeline anhand eines
Beispiels® naher erlautert (vgl. Abbildung 5).

Source 1 System- System-
Code M e l konfiguration konfiguration

Tester Y
Developer Self-service ‘ User Acceptance Tests
; deployments
:ss f;?‘g;’ﬁggs oy —p-| Konfiguration der Zielumgebung |—
' Deployment und Smoketests
Y Y GUI- und Abnahmetests
Commit stage Automated Acceptance Stage

: Konfiguration der Zielumgebung
Build
Unittests Deployment und Smoketests

GUI- und Performancetests

Codechecks
> Production Deployment |
; Konfiguration der Zielumgebung
Artefakte Support Deployment und Smoketests
Reports perform
Metadaten Reports push-button Reports
Artefakte Metadata releases Artefakte Metadata y
[Artifact Repository j

Abbildung 5: Die klassischen Phasen der Deployment Pipeline

5 Vereinfachtes Beispiel flr den Fall von Globalpark
© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hurth

GLOBALPARK
—

Commit Stage

Der Delivery-Prozess startet, sobald die Entwickler eine neue Anderung in Mercurial committen. Ab diesem Moment reagiert
das Cl-System auf die Anderung, indem eine neue Instanz der Deployment Pipeline gestartet wird. In der ersten Phase
(Commit Stage) wird der Code ,kompiliert“. AnschlieBend werden die Unittests und die Codechecks ausgefiihrt. Sind alle
Tests erfolgreich gelaufen, so wird das deployable System in Form eines Artefakts im Artifact Repository abgelegt. Um die
Artefakte sowohl fUr alle User als auch fur die nadchsten Phasen der Pipeline verfugbar zu machen und um diese besser zu
verwalten, kdnnen sog. Repository Manager wie z.B. Nexus oder Artifactory eingesetzt werden. Mit Hilfe solcher Systeme
kédnnen nicht nur Artefakte sondern auch Reports und Metadaten mit Informationen Uber die ,kompilierte” Version mit
gespeichert werden.

Das Hauptziel der Commit Stage ist, Fehler schnellstmoglich zu identifizieren. Sie dient sozusagen als ein Check-In-Gate,
das fur die Freigabe des Artefakts fUr die ndchsten Phasen zusténdig ist. Die Commit Stage sollte im besten Fall ein
interaktiver Prozess sein. D.h., dass die Entwickler erst ,warten sollten“ bis die Tests gelaufen sind, damit sie mit ihren
nachsten Tasks weitermachen kénnen. Das ist auch der wesentliche Grund warum die Ausflihrung der Tests nicht auf dem
Cl-System stattfindet, sondern auf dedizierten Testrechnern, die eine parallele AusfUhrung der Tests unterstitzen. Die
Begriindung, warum Entwickler in der Regel nur auf die Ergebnisse der Commit Stage warten sollen und nicht auf die aller
Phasen der Pipeline, liegt an der Tatsache, dass die vollstandige Ausflhrung der Pipeline zu ,lange” dauert. In der schénen

Welt wlrden alle Tests in wenigen Sekunden durchlaufen, was in der realen Welt nicht immer (nie) zu vertreten ist.

Automated Acceptance Stage

Automatisierte Unittests und Codechecks sind wesentliche Bestandteile jedes agilen Entwicklungsprozesses. Allerdings sind
diese bei komplexen Softwareprojekten oft nicht ausreichend. Es gibt in der Praxis genug Beispiele von Softwareprojekten,
bei denen tausende von Unitests erfolgreich ausgefihrt werden, aber die funktionalen und vor allem nicht-funktionalen
Anforderungen, wie z.B. Performance und Browserunterstitzung, trotzdem nicht erfiillt werden.

Die zweite Phase (Automated Acceptance Stage) wird am Ende der Commit Stage angestoBBen und dauert in der Regel
langer als die erste Phase. Hier wird die Zielumgebung fur das Deployment erst vorbereitet. Dies wird z.B. anhand von
Konfigurationsdateien (die ebenfalls in Mercurial abgelegt werden (1)) erledigt. AnschlieBend wird das Artefakt automatisch in
die Zielumgebung deployed. Mit Hilfe von Smoketests wird sichergestellt, dass die Umgebung vor und nach dem
Deployment gliltig ist (z.B. mit Hilfe von Soll-Ist-Vergleichsskripten). Im nichsten Schritt werden GUI- und Performancetests
ausgefthrt, die die vom Testmanagement definierten Akzeptanz-Kriterien kontinuierlich Gberprifen. Auch hier ist extrem

wichtig, dass die Tests parallel auf dedizierten Testrechner laufen und besonders aussagekréaftig sind.

User Acceptance Tests und Production Deployment

Nachdem das Artefakt die ersten zwei Stages der Pipeline erfolgreich durchlaufen hat, soll jedes Teammitglied in der Lage
sein, das Artefakt in den gewinschten Zielumgebungen zu deployen. Tester und Support kénnen nicht nur selber
entscheiden, welcher Release-Kandidat in welcher Umgebung deployed wird, sondern auch wichtige Informationen Uber
den Status der ersten zwei Phasen des Prozesses (Check-In-Kommentaren) erhalten. Typische Zielumgebungen sind
Testumgebungen, bei denen der Tester den Release-Kandidat auf inhaltliche Anforderungen Gberpriifen kann (UAT)®. Wurde
der Release-Kandidat von der QA abgenommen, so kann der Tester den RC ,promoten® indem er ihn als ,QA approved*
taggt. Ein ,approved RC* ist die Freigabe flr den Support, damit der RC in die Produktivumgebung deployed werden kann.

In den meisten Fallen ist die Freigabe eines RC durch die QA nicht immer zwingend notwendig. Viel wichtiger bei diesem
Ansatz ist, dass der Workflow (von Check-In bis zum Kunden) nicht in Stein gemeiBelt und dadurch unflexibel wird. Wenn
z.B ein Critical-Bug-Fix schnellstméglich an den Kunden gebracht werden muss, muss die Mdglichkeit bestehen, den
Prozess so zu optimieren, dass mehrere Phasen parallel ausgefuhrt werden. Es soll z.B. moglich sein, dass unmittelbar nach
der Commit Stage mit manuellen explorativen Tests angefangen werden kann.

6 User Acceptance Test
© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hurth

http://nexus.sonatype.org/
http://nexus.sonatype.org/
http://www.jfrog.com/
http://www.jfrog.com/

Self-Service Deployment <GLDBALPAF'K/

Die Moglichkeit entscheiden zu kénnen welcher RCT in welcher Umgebung deployed wird, ist bei der Einflhrung einer
Deployment-Pipeline die oberste Prioritat. Nur so kann die Traceability (Version <-> Feature <-> Bugfix <-> Environment)
sichergestellt werden. In diesem White Paper wird der Begriff ,Self-Service Deployment System (SSD-System)” eingeflhrt.
Er beschreibt die ersten Uberlegungen, wie ein derartiges System anhand eigener Entwicklung umgesetzt werden kénnte.

Grundlegende Ideen zur Standardisierung des Deploymentprozesses

Um vorhandenes Know-How auszunutzen, kénnte das SSD-System in Form einer Webapplikation umgesetzt werden.
Abbildungen 6 und 7 verschaffen einen Uberblick wie das System in der Praxis aussehen kénnte.

Pipeline Status

@ C> X Q { http://81 pipeline-status.globalpark.com] @

Revision Commit Acceptance UAT Production
8.1.259 .- ® s
Revision: 259 auto D auto D Enanuab Q Enanual .
20 minutes ago | T
by santos
4 | js: bug kaba-1567 fixed ®|
8.1.258
Revision: 258 %autE> D Ejto > D Enanuab Q Enanuab Q
45 minutes ago
by kretek

QA aproved
8.1.257 . o = o
Revision: 257 %ath D Euto) D Enanuab G Enanuab .
1 hour ago Ve =
by rolnik
kretek
bieler

&

Abbildung 6: Mdgliche Darstellung der Pipeline Status

Mit Hilfe eines SSD-Systems sollen Tester in der Lage sein, die Status und Informationen der einzelnen Pipeline-Phasen zu
Uberprifen und den entsprechenden Release-Kandidaten in die gewiinschten Testumgebungen zu deployen (vgl. Abbildung
6). Das gleiche Prinzip gilt fur die ndchsten Phasen der Pipeline, wobei hier der Support oder die System Engineerings fur
das Deployment in den Produktivumgebungen zustandig wéren.

Die Rollen bei der Deployment Pipeline

Damit der Deploymentprozess nicht unbefugt angestoBen wird, kann ein kleines Benutzerverwaltungssystem mit Rollen und
Gruppen eingeflhrt werden, wie z.B. QA, Operations und Developer, wobei Developers nur in ihren eigenen Umgebungen
deployen kénnen. Diese Rollen werden vom Release und Deployment Manager festgelegt.

” Release Candidate
© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hurth

‘ GLOBALPARK

Wichtig bei der Deployment-Phase ist, dass der Deployment-Prozess vollkommen automatisiert stattfindet. Unabhéngig
davon, welcher Anwender den Deploymentprozess anstof3t, es soll immer in der gleichen Form deployed werden. Daflr
brauchen wir Skripte, die bestimmte Checks ausflihren und den RC in die gewiinschten Zielumgebunden ausrollen. In der
Praxis wird das Masterskript haufig ,Conan, der Deployer” genannt. Bei Globalpark hat sich die Bezeichnung ,ROM*8 fiir
diese Skriptsammlung etabliert.

Die Deployment-Skripte

Mit diesen Skripten soll méglich sein, alle wichtigen Uberpriifungen durchzufiihren, die fiir das sichere Deployen eines
Releases notwendig sind (wie z.B. Verflugbarkeit der Umgebung, Upgrademdglichkeit und Vergleich vom Soll-, Ist-Zustand).

Jedes Mal wenn der manuelle Deployment-Prozess angestoen wird (Mauszeiger in Abbildung 6), wird der Anwender zu der
sog. Deployment-Ansicht weitergeleitet. Mit Hilfe von Skripten und Konfigurationsdateien kann der User den Host sowie die
Installation, die geupdatet/geupgraded werden soll, auswahlen (Abbildung 7). Beim Auswahlen einer Installation werden
alle(!) fGr das Deployment relevanten Informationen geladen. Der Anwender kann z.B. sehen, welches Release z.Z. aktiv ist
sowie welche Releases fur diese Installationen zur Verfligung stehen und zwar unabhangig davon, ob es sich um eine Build-
oder Mercurial/CVS-Installation handelt. Fir die Ausfiihrung der Skripte soll der Installationstyp gleichgtiltig sein.
Uberpriifungen erfolgen im Hintergrund und bleiben somit dem Anwender verborgen.

Self-Service Deployment
<:: C> X {} { http://self-service-deployment.globalpark.com] @
Host About this environment Upgrade, update status
bremen v Current EFS Version: 8.1
- . 8.2v
. Initial EFS version: 7.1
Environment c Rel
urrent Release: 81.258 - i
192.121.8.122 (Nintendo) - re-run check update script see error log
Last Release: 81.250)
checking... =
Available Releases O Name: nintendo.globalpark.com | o o] config...
Del |lteration | Release | Build | Check-In Actions
heck checking...
X 23 81.259 259 | 14.02.2009 15:31:30 GMT chec Y
¢ 22 81.258 258 | 14.02.2009 14:45:12 GMT re-deploy stop release browse
X 21 81.256 256 | 14.02.2009 12:15:38 GMT check deploy 4B ok to deploy
X 20 81.250 250 | 13.02.2009 10:18:24 GMT check @ seeerrorlog
more...
Abbildung 7: Self-Service deployment
8 Rollout Management 2.0

© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hurth

https://it.globalpark.de/twiki/bin/view/Sysadmin/RollOutManagement
https://it.globalpark.de/twiki/bin/view/Sysadmin/RollOutManagement

GLOBALPARK
—

Weiterfiihrende Mdoglichkeiten

Zusétzlich zu der Deployment-Ansicht kénnen wichtige Informationen anhand von Uberpriifungsskripten fir den Support
und System Engineerings bereitgestellt werden. Eine wichtige Information wére z.B. zu wissen, wie kompatibel eine
Installation mit den nachsten (Major-)Releases ist. Daflr kdnnte das aktuelle ,check upgrade script” erweitert werden, um
Soll-Ist-Vergleiche ,on the fly* ausflhren zu kénnen. Bedingung daflr ist, dass jede Installation einen Ist-Zustand hat, der
anhand von Konfigurationsdateien und Checks definiert wird. Um den Soll-Zustand anhand von Konfigurationsdateien und
Checks zu definieren, kdnnen Muster-Installationen, die immer up-to-date sind, eingesetzt werden (mehr zum Thema Soll-
Ist-Vergleich in diesem Abschnitt).

Wesentliche Vorteile eines SSD-Systems:

i. Kontrolle Uber die Systemkonfiguration:
Je weniger Kontrolle wir Uber die Umgebungen haben, in denen unsere Releases deployed werden, desto gréBer ist
die Wahrscheinlichkeit, dass unbekannte Probleme auftreten. Im Idealfall mdchten wir jedes einzelne Bit, das
deployed wird, nachvollziehen kénnen. Mit Hilfe eines SSD-Systems ist die aktuelle Systemkonfiguration flr jeden vor

und nach dem Deployment sichtbar.

Mit diesen Informationen kénnen Tester Umgebungen besser Uberwachen und Probleme préziser diagnostizieren.
Diese Mdglichkeit fuhrt zu schnellerem Feedback und somit implizit zu schnelleren Bug-Fixes. Je komplexer und
verteilter das System wird und je spezifischer die Systemkonfigurationen werden, desto wichtiger ist die Méglichkeit,
diese unter Kontrolle zu haben.

. Demokratisierung des Deploymentprozesses:
Mit der Standardisierung und Automatisierung des Deploymentprozesses wird der Delivery-Prozess demokratisiert.
Tester, Entwickler und Support missen sich nicht mehr auf Emails oder Jira-Tickets verlassen, um einen RC in den

gewunschten Umgebungen zu deployen oder um zu wissen, ob die Umgebung Uberhaupt daflr geeignet ist.

Tester kdnnen genau entscheiden, welche Release-Version sie in welchen Testumgebungen deployen méchten und
zwar ohne irgendwelche technische Expertise daflr haben zu mussen. Da der Deployment-Prozess nur das Driicken
eines Knopfes bedeutet, kann die Version, die gerade getestet wird, ofters gedndert werden. Im optimalen Fall
kénnen Tester zu vorigen Versionen rollbacken, um Vergleichstests ,on demand” ausfihren zu kénnen.

Aber nicht nur das Development profitiert von einem SSD-System. Auch Sales oder Marketing kénnen das ,Knaller-
Feature” per Knopf-Druck in Staging-Umgebungen und Showrooms deployen, um den Kunden vom Mehrwert des
Produkts schneller zu Uberzeugen. Und das ohne die technische Hintergriinde des Deploymentprozesses kennen zu

mussen.

Risikominimierung beim Deploymentprozess:

Die Sicherheit, dass das SSD-System immer robuster und dadurch auch das Risiko von auftretenden Problemen
minimiert wird, wird durch den Prozess an sich gewahrleistet. Dadurch, dass immer der gleiche Prozess fur die
Auslieferung der Software verwendet wird, wird dieser kontinuierlich (mehrmals taglich) getestet und optimiert.

iv. Software per Knopfdruck:
Wie in der Einleitung dieses White Paper erwahnt, verfolgt der Ansatz von Continuous Delivery das Ziel, Software per
Knopfdruck bereitzustellen, um Feedback von Kunden und Stakeholder schnellstmdglich einzuholen sowie die mit
jedem Release verbundene Risiken zu minimieren. Die Einfuhrung eines SSD-Systems ist die letzte Instanz bei der
EinfGhrung einer Deployment Pipeline und kann zum Erreichen des Continuous-Delivery-Ziels erheblich beitragen.

© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hurth

ANAGE HAT MATTERS ‘ GLOBALPARK

Was kann im Auslieferungsprozess noch optimiert werden?

Es sind einige Optimierungsmoglichkeiten, die im Zusammenhang mit der Einflhrung von Continuous Delivery unbedingt
bericksichtigt werden sollten:

Backing out Changes:

Bei der EinfUhrung einer Deployment Pipeline ist es unabdingbar, dass wir Anderungen rollbacken kénnen, falls
Uberraschende Probleme in der Produktion oder in den Testumgebungen auftreten. Wir wissen allerdings, dass diese
Moglichkeit, gerade bei Legacy-Systemen wie z.B. EFS, nicht immer besteht. Sobald die ,Healself* auf einer Installation
ausgefihrt und dabei Anderungen in der DB, im DB-Schema oder im Dateisystem vorgenommen wurden, kénnen wir nur in
den seltensten Fallen ohne weiteres rollbacken. In den n&chsten Abschnitten werden einige grundlegende Ideen zum Thema
dargelegt:

NB-Migzati

In der Praxis existieren mehreren Ansatze, die uns erlauben ,hot deployments® und ,hot rollbacks” zu machen. Einer dieser
Ansétze beschreibt die Trennung des DB-Migrationsprozesses vom Deploymentprozess wie in Abbildung 9 zu sehen ist.
Dieser Ansatz ist besonders interessant, wenn das System 6fters und ohne regelméBige Anderungen in der DB released
wird. Die Kompatibilitat des Systems zur DB-Version wird hierbei anhand Konfigurationsdateien definiert und mit Hilfe von
Checkskripten ,on the fly* ermittelt. Fur die Versionierung der Datenbank kénnen sog. Data Base Change Management
Systeme wie z.B. Liquibase eingesetzt werden. Der wesentliche Vorteil von DBCM-Systeme wie Liquibase sind die
Moglichkeiten die Datenbank zu versionieren, Datenbank-Versionen zu ,diffen* und die Unterschiede in Form von
ausflhrbaren Changesets auszugeben sowie die automatische Generierung von Rollback-Statements flr typische Update-
Statements (create, rename, add, drop, usw.).

Eine weitere Moglichkeit ist, das System nicht nur fir neue DB-Versionen kompatibel zu halten, sondern auch fur die aktuelle
Version (vgl. EFS 8.1-245 in Abbildung 9). Somit haben wir immer noch die Mdglichkeit die Kompatibilitat des Systems mit
der aktuellen Version zu testen. Sind wir sicher, dass das System mit der aktuellen DB-Version einwandfrei funktioniert, so
kénnen wir eine DB-Migration durchfiihren und die néchste Version des Systems deployen (vgl. EFS 8.1-246 in Abbildung 9).
Stellen wir ein Problem mit der n&chsten Version fest, missen wir nur rollbacken.

DB Vr.2 DB Vr.3 DB Vr.4
migrate deployed migrate deployed deployed migrate deployed
tovr.2 8.1-245 tovr.3 8.1-246 8.1-247 tovr. 4 8.1-248
y \4 y
Zeit
Abbildung 9: Trennung von DB-Migration und Deployment
heck- -Skrj

Um den Deploymentprozess ,,on the fly“ anstoBen zu k&nnen, missen wir in der Lage sein, die aktuelle Version der Software
mit allen méglichen (Major-)Releases zu vergleichen. Zur Zeit werden Anderungen in der Healself und im Dateisystem mit
Hilfe eines Check-Upgrade-Skripts Uberpriift. Das Problem bei diesem Ansatz ist, dass Uberpriifungen explizit im Check-
Upgrade-Skript eingetragen werden miissen. Vergisst ein Entwickler eine wichtige Uberpriifung einzubauen, so wird diese
vom Check-Upgrade-Skript nicht berlcksichtigt. Je langer die Zeit zwischen den Releases, desto groBer ist die
Wahrscheinlichkeit, dass wichtige Uberpriifungen vergessen werden.

© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hurth

http://www.liquibase.org/
http://www.liquibase.org/

GLOBALPARK
—

Ein weiteres Problem bei diesem Ansatz ist, dass die Migrationstests erst am Ende der Entwicklungsphase ausgefihrt
werden. Das widerspricht der Idee von Continuous Delivery, da die Software nicht zu jedem Zeitpunkt releasefahig ist,
sondern nur nachdem aufwandige Migrationstests ausgefihrt wurden. Interessanter wére in diesem Fall die Healself mit Hilfe
von deklarativen Statements zu definieren.

Dadurch, dass Anderungen deklarativ in der Healself definiert werden, waren explizite Uberpriifungen im Check-Upgrade-
Skript nicht mehr notwendig. Das Check-Upgrade-Skript wiirde nur die notwendige Anweisungen flir einen Soll-Ist-Vergleich
beinhalten und somit unabhangig von der System-Version (wie z.B. check_upgrade_70_to_71.php) gemacht werden. Der
Stand einer Installation kénnte dann mit Hilfe von statischen Konfigurationsdateien, der Healself, der DB-Version und ggfs.
von dynamischen Checks ermittelt werden. Kennt das Check-Upgrade-Skript den exakten Stand einer Installation, so kann
es Soll-Ist-Vergleiche ausfihren und die Kompatibilitdt einer Version zu (Major-)Releases in Laufzeit ermitteln.

Da der zukunftige Stand einer Version nur bekannt ist, nachdem die Healself ausgefthrt wurde, kénnten Muster-
Installationen, die immer up-to-date sind und alle Module beinhalten, flr die Vergleichstests eingesetzt werden.

Metriken:

Schnelles Feedback steht im Mittelpunkt jedes Auslieferungsprozesses. Das Einholen von Feedback in den friheren
Entwicklungsphasen gibt uns die Moglichkeit schneller zu reagieren und somit den Auslieferungsprozess bestmdéglich zu
optimieren. Was wir allerdings dafur bendtigen sind Metriken, an den wir uns orientieren konnen. Das Problem ist nur: Was
sollen wir nun alles messen?

Das Verhalten des Development-Teams kann, je nachdem was gemessen und als Feedback eingeholt wird, erheblich
beeinflusst werden. Mehrere Studien deuten darauf hin, dass wenn LOC® gemessen werden, tendieren Entwickler dazu
weniger Code zu schreiben (Code Clean Development). Fangen wir an, die Anzahl der gefixten Bugs zu messen, so
tendieren Tester dazu Tickets schneller zu schlieBen und Entwickler Bugs schneller zu fixen.

Metriken wie z.B. die Anzahl fehlgeschlagener Unittests, die Anzahl offener oder gefixter Bugs, LOC, usw. helfen uns
sicherlich bei der Kontrolle und Optimierung der Softwarequalitat weiter. Allerdings liefern diese Metriken alleine, keine
Antwort auf die wichtigste Frage des Auslieferungsprozesses - ,Wie lange brauchen wir, um eine Anderung zu releasen, die
nur eine Code-Zeile betrifft?* -. Um diese Frage beantworten zu kdnnen, bendtigen wir vielmehr eine globale Metrik, die uns
ermdglicht, zu identifizieren, ob der Auslieferungsprozess als ganzer optimiert werden kann.

Bei vielen Globalpark-Projekten konzentrieren wie uns zu sehr auf die Erhebung bekannter Qualitdétsmetriken. Allerdings
bringt uns die Erkenntnis, ob ein Bug schnellstmoglich gefixt wird oder ob unsere Unittests stabil laufen, nicht viel.

Wenn wir trotzdem ca. 4 Monate bendtigen, um einen Bugfix oder Feature an den Kunden zu bringen, haben wir den
Auslieferungsprozess dadurch langst nicht optimiert. Wenn wir uns aber auf die Optimierung des Prozesses an sich ,,von
Check-In bis zur Auslieferung” fokussieren, fordern wir implizit nicht nur die Verbesserung der Qualitét, sondern auch anderer
wichtiger Aspekte des gesamten Prozesses. Die Einflihrung einer Deployment Pipeline kann uns bei der Feststellung
mdglicher Engpésse im Auslieferungsprozess (von Check-In bis zur Auslieferung) unterstitzen, indem der Prozess
transparent gemacht wird (jeder kann sehen, was uns davon abhalt, die Software an den Kunden zu bringen). Sind die
Engpéasse bekannt, so kénnen diese nach dem Demingkreis-Prinzip (Plan-Do-Check-Act) optimiert werden.

Qualitdtsmetriken sollen also nicht (!) als MaB fir die Qualitat des Auslieferungsprozesses gelten. Vielmehr sollen sie fir die
Verdeutlichung der ,Software-Robustheit* verwendet werden. Wichtig hierbei ist, dass der ,Software-Gesundheitszustand*®
allen Beteiligten sichtbar gemacht wird. Dafir kénnen Qualitdtsmanagement-Software wie z.B. Sonar eingesetzt werden. Mit
Hilfen von Sonar kénnen alle wichtigen Qualitdtsmetriken eines Softwareprojektes zusammengefasst und auf einem
Dashboard dargestellt werden. Die Visualisierung ist leicht verstéandlich und kann sogar vom Management fuir

demonstrativen Zwecken verwendet werden (vgl. Abbildungen 8 und 9).

9 Lines of Code

© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hurth

http://www.sonarsource.org/
http://www.sonarsource.org/

Home

& Apache Tomcat

MANAGE

WHAT

MATTERS

Configuration Login

Duplication™
N ~—Violations

\j—(ommems

GLOBALPARK

No information available on coverage

No information available on design

0
0
22 4 I
0
1.041 [|

A Alerts : Duplicated lines (%) > 5.

4 6 B8 10 12

@ Methods O Classes

Dashboard Version 6.x - Montag, 28. Marz 2011, 09:56 Uhr - [Time changes... B
SQALE .
Com o Lines of code Classes Technical Debt &)
Violations drilldown 164.190 4 110-4462k 1,1% ‘:
Time machine 328.075 lines & 14,1;cm:?::ds $337.550 ¥ Complexity
Clouds 88.749 statements & +1.278 BccesSOrS 675 man days ¥
q 1.0869 files .
Design
Hotspots
amesha Comments Duplications Violations A Block
lotion chart 0, - locker
Radiator 26,6% ik 9.963 & 2 Critical
) 59.386 lines 23.417 lines & Maior
Timeline 59,0% docu. API 521 blocks ¥ Rules compliance Major
5.453 undocu. API X 7% ¥ Minor
N 1.153 commented LOCs 178 files * 83,7% ¥ Info
sonar
Events
28.03.2011 Version 6.x .
) Complexity Loo0n
07.06.2009 Version 6.0.x 3,2 Imethod
15.02.2009 Alert Orange (@] 30,9 Jclass b
42,3 rile oL
Key: org.apache:tomcat Total: 45.245 &
Language: java
Profile: Nemo rules
Alerts: EY RSS Feed
Powered by SonarSource %) - Open Source LGPL % - v.2.7-RC3 - Plugins % - Documentation % - Ask a question) - Bug/feature request)
Abbildung 8: Sonar Dashboard
Home & Apache Tomcat Configuration Login
Dashboard Version 6.x - Montag, 28. Marz 2011, 09:56 Uhr - profile Nemo rules
SQALE Size: [Lines of code 15] color: [Rules c e]
Components
Violations drilldown
Time machine
Clouds
Design
Hotspots
Libraries
Motion chart

Timeline

N
sonar

Abbildung 9: Sonar Radiator

© Globalpark GmbH, Kalscheurener Str. 19a, 50354 Hurth

